Processing of VLF Amplitude Measurements: Deduction of a Quiet Time Seasonal Variation

Author:

Schneider H.1ORCID,Wendt V.1ORCID,Banys D.1ORCID,Clilverd M.2ORCID,Raita T.3

Affiliation:

1. German Aerospace Centre Solar Terrestrial Institute Neustrelitz Germany

2. Physical Sciences Division British Antarctic Survey Cambridge UK

3. Sodankylä Geophysical Observatory University of Oulu Oulu Finland

Abstract

AbstractThe amplitude of Very Low Frequency (VLF) transmissions propagating from transmitter to receiver between the Earth's surface and the ionospheric D‐region is a useful measurement to detect changes in the ionization within the D‐region ranging from 60 to 90 km. The VLF signal amplitude is disturbed by geomagnetic, solar, and atmospheric phenomena. To be able to identify perturbations in the VLF signal amplitude, we determine its averaged seasonal variation under quiet solar and geomagnetic conditions. Here it is challenging, that long time series of the VLF signal amplitude show significant jumps and outliers, which are caused artificially by technical adjustments/maintenance work. This paper presents a new approach for processing long VLF data time series over multiple years resulting in level 2 data. The new level 2 data enables the consideration of time series with artificial jumps since the jumps are leveled. Moreover, the outliers are removed by a robust and systematic 2‐step outlier filtering. The average seasonal and diurnal variation for different transmitter‐receiver combinations can be computed with the new level 2 data by applying a composite analysis. A subsequently applied polynomial fit obtains the quiet time lines for daytime and nighttime, representing the typical seasonal variation under undisturbed conditions of the VLF signal amplitude for each considered link. The developed quiet time lines may serve as a tool to determine perturbations of the VLF signal amplitude with solar and geomagnetic as well as atmospheric origin. Also, they allow comparison of the VLF signal amplitude variation for different transmitter‐receiver links.

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Why Does the October Effect Not Occur at Night?;Geophysical Research Letters;2024-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3