Sub‐Diurnal Methane Variations on Mars Driven by Barometric Pumping and Planetary Boundary Layer Evolution

Author:

Ortiz J. P.12ORCID,Rajaram H.2ORCID,Stauffer P. H.1ORCID,Lewis K. W.3ORCID,Wiens R. C.4ORCID,Harp D. R.5

Affiliation:

1. Los Alamos National Laboratory Energy and Natural Resources Security Los Alamos NM USA

2. Department of Environmental Health and Engineering The Johns Hopkins University Baltimore MD USA

3. Department of Earth and Planetary Sciences The Johns Hopkins University Baltimore MD USA

4. Department of Earth, Atmospheric, and Planetary Sciences Purdue University West Lafayette IN USA

5. The Freshwater Trust Portland OR USA

Abstract

AbstractIn recent years, the Tunable Laser Spectrometer within the Sample Analysis at Mars (TLS‐SAM) instrument on board the Mars Science Laboratory (MSL) Curiosity rover has detected methane variations in the atmosphere at Gale crater. Methane concentrations appear to fluctuate seasonally as well as sub‐diurnally, which is difficult to reconcile with an as‐yet‐unknown transport mechanism delivering the gas from underground to the atmosphere. To potentially explain the fluctuations, we consider barometrically induced transport of methane from an underground source to the surface, modulated by temperature‐dependent adsorption. The subsurface fractured‐rock seepage model is coupled to a simplified 1‐D atmospheric mixing model to provide insights on the pattern of atmospheric methane concentrations in response to transient surface methane emissions, as well as to predict sub‐diurnal variation in methane abundance for the northern summer period, which is a candidate time frame for a MSL Curiosity sampling campaign. Our analysis suggests that there is a lower limit to the subsurface fracture density that can produce the observed methane patterns, below which the atmospheric methane variations would be out of phase with the observations. The best‐performing model scenarios indicate a significant, short‐lived methane pulse just prior to sunrise, the detection of which by TLS‐SAM would be a potential indicator of the contribution of barometric pumping to Mars' atmospheric methane variations.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3