Long‐Term Variation of the Galactic Cosmic Ray Radiation Dose Rates

Author:

Lyu D.1ORCID,Qin G.12ORCID,Shen Z.‐N.3

Affiliation:

1. School of Science Harbin Institute of Technology Shenzhen People's Republic of China

2. Shenzhen Key Laboratory of Numerical Prediction for Space Storm Harbin Institute of Technology Shenzhen People's Republic of China

3. State Key Laboratory of Lunar and Planetary Sciences Macau University of Science and Technology Macao People's Republic of China

Abstract

AbstractIn this work, a model for calculating the galactic cosmic rays (GCRs) radiation dose rate is developed. The model is based on a GCR modulation model, which is established by Shen and Qin, and the fluence‐dose conversion coefficients (FDCCs) published by the International Commission on Radiological Protection (ICRP). With the model, the radiation absorbed dose rate of GCRs near the lunar surface over long time periods is calculated and compared with the observation data from the Cosmic Ray Telescope for the Effects of Radiation and the Lunar Lander Neutron and Dosimetry. First, the energy spectrum of GCRs at 1 AU in the ecliptic, where the lunar orbit is located, is computed using the GCR modulation model. Then, using the FDCCs of ICRP 123, the absorbed dose rates of 15 human organs/tissues at the lunar orbit position are calculated to represent the general absorbed dose rate of the body (in water). Furthermore, considering the albedo radiation (excluding neutrons) and using the water‐silicon conversion coefficients, the total absorbed dose rates of GCRs near the lunar surface (in silicon) are calculated, it is shown that our modeling results generally agree with the observations from spacecraft. This work is useful for future manned space exploration to the Moon or other celestial bodies in the solar system.

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3