Estimation of Moho Depth Beneath Southern Indian Shield by Inverting Gravity Anomalies Constrained by Seismic Data

Author:

Roy Arka12ORCID,Prasad Muthyala12ORCID,B Padma Rao1,Tomson J. K.1

Affiliation:

1. Solid Earth Research Group National Centre for Earth Science Studies Trivandrum Kerala India

2. Department of Marine Geology & Geophysics Cochin University of Science and Technology Kochi Kerala India

Abstract

AbstractThis study presents a high‐resolution 3D Moho structure beneath southern India and its surrounding regions from observed gravity anomalies. The global gravity disturbance model (XGM2019e) with a grid resolution of 0.1° is considered for this study. The extended Bott's inversion algorithm and Gauss‐Fast Fourier Transform based forward model are adopted to invert for the Moho undulations beneath the Indian peninsula. The inversion algorithm is tested for a synthetic model having a predefined density contrast and mean Moho depth. The robustness of this inversion algorithm is further tested for noise‐incorporated gravity data. The control points are required for estimating two hyper‐parameters, viz. density contrast, and reference depth, which play a crucial role in the precise estimation of Moho depth. In real case study, the inverted Moho depth of Southern India and its surrounding regions by seismic constraint receiver function‐driven control points show a very complex architecture of Moho topography. The observed average crustal thickness in the study region is 35.35 km, corroborating with the previously reported Moho depths. The maximum crustal thickness is 53.04 km beneath the southern part of Archean Western Dharwar Craton and west of Salem block, around 44–47 km Moho depth is observed at the south of Salem block into Madurai block till Achankovil Shear Zone, which suggests the possible continuation of the Achaean crust of Palghat‐Cauvery Shear Zone System. The lowest crustal thickness values are observed along the eastern margin of the Cuddapah basin, which overlaps with the Proterozoic Krishna basin of the Eastern Ghats Mobile belt.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3