Characteristics of the Matuyama‐Brunhes Magnetic Field Reversal Based on a Global Data Compilation

Author:

Mahgoub Ahmed Nasser12ORCID,Korte Monika1ORCID,Panovska Sanja1ORCID

Affiliation:

1. Helmholtz Centre Potsdam, Deutsches GeoForschungsZentrum GFZ Section 2.3 – Geomagnetism Potsdam Germany

2. Geology Department Assiut University Assiut Egypt

Abstract

AbstractMagnetic field reversals are irregular events in Earth's history when the geomagnetic field changes its polarity. Reversals are recorded by spot and continuous remanent magnetization data collected from lava flows and marine sediments, respectively. The latest field reversal, the Matuyama‐Brunhes reversal (MBR), is better covered by paleomagnetic data than prior field reversals, hence providing an opportunity to understand the physical mechanisms. Despite the quantity of data, a full understanding of the MBR is still lacking. The evolution of the MBR in time and space is explored in this work by compiling a global set of paleomagnetic data, both from sediments and volcanic rocks, which encompass the period 900–700 ka. After careful evaluation of data and dating quality, regional and global stacks of virtual axial dipole moment (VADM), virtual geomagnetic pole (VGP), and paleosecular variation index (Pi) are constructed from the sediment records using bootstrap resampling. Individual VADMs and VGPs calculated from lavas are compared to these stacks. Four phases of full‐vector field instability are observed in these stacks over the period 800–770 ka. The first three phases, observed at 800–785 ka, reflect a rapid weakening of the field coupled with low VGP latitude, after which the field returned to the reverse polarity of the Matuyama chron. The fourth phase, lasting from 780 to 770 ka, is when the field reversal process completed, such that the field entered the Brunhes normal polarity state. These findings point to a complex reversal process lasting ∼30 Kyr, with the reversal ending at ∼770 ka.

Funder

Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3