Kinetic Isotope Effects During Reduction of Fe(III) to Fe(II): Large Normal and Inverse Isotope Effects for Abiotic Reduction and Smaller Fractionations by Phytoplankton in Culture

Author:

John S. G.12ORCID,Boyle E. A.3ORCID,Cunningham B. R.2,Fu F.‐X.4,Greene S.25,Hodierne C.2,Hutchins D. A.4,Kavner A.6ORCID,King A. L.7,Rosenberg A. D.28,Saito M. A.9,Wasson A.2

Affiliation:

1. Department of Earth Sciences University of Southern California Los Angeles CA USA

2. School of the Earth, Ocean & Environment University of South Carolina Columbia SC USA

3. Department of Earth, Atmospheric, and Planetary Sciences Massachusetts Institute of Technology Cambridge MA USA

4. Marine and Environmental Biology University of Southern California Los Angeles CA USA

5. Minnesota Pollution Control Agency in Saint Paul St Paul MN USA

6. Department of Earth, Space, and Planetary Sciences and Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA USA

7. Norwegian Institute for Water Research Oslo Norway

8. ANGARI Foundation West Palm Beach FL USA

9. Marine Chemistry and Geochemistry Department Woods Hole Oceanographic Institution Woods Hole MA USA

Abstract

AbstractIron stable isotopes (δ56Fe) are a useful tool for studying Earth processes, many of which involve redox transformations between Fe(III) and Fe(II). Here, we present two related experimental efforts, a study of the kinetic isotope effects (KIEs) associated with the reduction of Fe(III)‐ethylenediaminetetraacetic acid (EDTA) to Fe(II), and measurements of the biological fractionation of Fe isotopes by phytoplankton in culture. Reductants tested were ascorbate, hydroxylamine, Mn(II), dithionite, and photoreduction at pH between 5 and 9 and temperatures from 0 to 100°C. Isotope fractionations were very large, and included both normal and inverse KIEs, ranging from −4‰ to +5‰. Experiments were reproducible, yielding similar results for triplicate experiments run concurrently and for experiments run weeks apart. However, fractionations were not predictable, without a clear relationship to reaction rate, temperature, pH, or the reductant used. Acquisition of Fe by eukaryotic phytoplankton also often involves the reduction of Fe(III) to Fe(II). Several species of diatoms and a coccolithophore were tested for Fe isotope fractionation in culture using EDTA, NTA, and DFB as Fe(III) chelating ligands, yielding fractionations from −1.3‰ to +0.6‰. Biological isotope effects were also unpredictable, showing no clear relationship to species, growth rate, or Fe concentration. Variability in Fe isotope fractionation observed in culture may be explained in part by the sensitivity of KIEs. This work has implications for the industrial purification of isotopes, interpretation of natural δ56Fe, and the use of Fe isotopes as a tracer Fe source and biological processes in the ocean and other natural systems.

Funder

Simons Foundation

National Science Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3