Ultra‐Low Velocity Zone Beneath the Atlantic Near St. Helena

Author:

Davison Felix1ORCID,Martin Carl12,Parai Rita3,Cottaar Sanne1ORCID

Affiliation:

1. Department of Earth Sciences University of Cambridge Cambridge UK

2. Faculty of Geosciences Utrecht University Utrecht The Netherlands

3. Department of Earth, Environmental, and Planetary Sciences Washington University in St. Louis St. Louis MO USA

Abstract

AbstractThere are various hotspots in the Atlantic Ocean, which are underlain by mantle plumes that likely cross the mantle and originate at the core‐mantle boundary. We use teleseismic core‐diffracted shear waves to look for an Ultra‐Low Velocity Zone (ULVZ) at the potential base of central Atlantic mantle plumes. Our data set shows delayed postcursory phases after the core‐diffracted shear waves. The observed patterns are consistent in frequency dependence, delay time, and scatter pattern with those caused by mega‐ULVZs previously modeled elsewhere. Synthetic modeling of a cylindrical structure on the core‐mantle boundary below St. Helena provides a good fit to the data. The preferred model is 600 km across and 20 km high, centered at approximately 15° South, 15° West, and with a 30% S‐wave velocity reduction. Significant uncertainties and trade‐offs do remain to these parameters, but a large ULVZ is needed to explain the data. The location is west of St. Helena and south of Ascension. Helium and neon isotopic systematics observed in samples from this region could point to a less‐outgassed mantle component mixed in with the dominant signature of recycled material. These observations could be explained by a contribution from the Large Low Shear Velocity Province (LLSVP). Tungsten isotopic measurements would be needed to understand whether a contribution from the mega‐ULVZ is also required at St. Helena or Ascension.

Funder

H2020 European Research Council

National Science Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3