Combustion Completeness and Sample Location Determine Wildfire Ash Leachate Chemistry

Author:

Campbell Micheline1ORCID,Treble Pauline C.12ORCID,McDonough Liza K.2ORCID,Naeher Sebastian3ORCID,Baker Andy12ORCID,Grierson Pauline F.4ORCID,Wong Henri2,Andersen Martin S.5ORCID

Affiliation:

1. School of Biological, Earth, and Environmental Sciences UNSW Sydney Sydney NSW Australia

2. ANSTO Lucas Heights NSW Australia

3. GNS Science Lower Hutt New Zealand

4. School of Biological Sciences The University of Western Australia Perth WA Australia

5. Water Research Laboratory School of Civil and Environmental Engineering UNSW Sydney Sydney NSW Australia

Abstract

AbstractUnderstanding past fire regimes and how they vary with climate, human activity, and vegetation patterns is fundamental to the mitigation and management of changing fire regimes as anthropogenic climate change progresses. Ash‐derived trace elements and pyrogenic biomarkers from speleothems have recently been shown to record past fire activity in speleothems from both Australia and North America. This calls for an empirical study of ash geochemistry to aid the interpretation of speleothem palaeofire proxy records. Here we present analyses of leached ashes collected following fires in southwest and southeast Australia. We include a suite of inorganic elemental data from the water‐soluble fraction of ash as well as a selection of organic analytes (pyrogenic lipid biomarkers). We also present elemental data from leachates of soils collected from sites in southwest Australia. We demonstrate that the water‐soluble fraction of ash differs from the water‐soluble fraction of soils, with trace and minor element concentrations in ash leachates varying with combustion completeness (burn severity) and sample location. Changes in some lipid biomarker concentrations extracted from ashes may reflect burn severity. Our results contribute to building a process‐based understanding of how speleothem geochemistry may record fire frequency and severity, and suggest that more research is needed to understand the transport pathways for the inclusion of pyrogenic biomarkers in speleothems. Our results also demonstrate that potential contaminant loads from ashes are much higher than from soils, with implications for the management of karst catchments, which are a critical water resource.

Funder

Australian Research Council

Australian Institute of Nuclear Science and Engineering

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3