Advanced Mathematical Model for the Transport of Aggregating Nanoparticles in Water Saturated Porous Media: Nonlinear Attachment and Particle Size‐Dependent Dispersion

Author:

Katzourakis Vasileios E.1ORCID,Chrysikopoulos Constantinos V.12

Affiliation:

1. Department of Civil Infrastructure and Environmental Engineering Khalifa University of Science and Technology Abu Dhabi UAE

2. School of Chemical and Environmental Engineering Technical University of Crete Chania Greece

Abstract

AbstractA conceptual mathematical model was developed to describe the migration of aggregating nanoparticles in water saturated, homogeneous porous media with one‐dimensional uniform flow. Nanoparticles can be found suspended in the aqueous phase or attached reversibly and/or irreversibly onto the solid matrix. The Smoluchowski population balance equation (PBE) was used to model the process of particle aggregation and was coupled with the advection‐dispersion‐attachment equation to form a nonlinear transport model. Furthermore, an efficient and accurate solver for the PBE, and an iterative solver for the linear or nonlinear attachment equations were employed. The new numerical model was applied to nanoparticle transport experimental data available in the literature. Although, conventional transport models can be used to describe nanoparticle migration at low ionic strength conditions, such models might not be applicable for high ionic strength conditions, where aggregation becomes a dominant process. Aggregation is significantly affecting the transport characteristics of nanoparticles. Under high ionic strength conditions, the mass retention in the solid matrix of the porous medium increases, and a nonlinear particle attachment behavior may be observed. The proposed model performed remarkably well, successfully capturing numerous physical processes associated with nanoparticle transport, including particle‐size‐dependent dispersion. Ignoring the aggregation process and using conventional colloidal transport models to model nanoparticle transport may lead to erroneous results.

Funder

Khalifa University of Science, Technology and Research

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3