Affiliation:
1. North Carolina State University Raleigh NC USA
2. Yale University New Haven CT USA
3. National Center for Atmospheric Research Boulder CO USA
Abstract
AbstractThe impacts of interannual oscillations of the Gulf Stream (GS) on oceanic mesoscale variability are investigated using satellite observations of sea surface height (SSH) and sea surface temperature (SST) from 1993 to 2018. We show that variations in GS position, strength, and meandering status are the dominant spatiotemporal modes in regional SSH variability as they explain over 50% of the total variance. In particular, meridional shift of the GS associated with the large‐scale wind variation over the North Atlantic contributes to approximately 30% of SSH variability. We further find that this path displacement mode can drive approximately 15% of regional mesoscale variability in eddy kinetic energy and divergent eddy heat flux. This observational‐based evidence of ocean mesoscale response to GS shift infers a potentially important forcing mechanism that could drive eddy‐scale ocean variability and has far‐reaching implications for regional ocean and ecosystem dynamics in response to climate variation.
Funder
National Science Foundation
National Center for Atmospheric Research
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献