Affiliation:
1. Centre National de Recherches Météorologiques UMR 3589 Météo France—CNRS Toulouse France
Abstract
AbstractThe barotropic vorticity (BV) balance is fundamental when interpreting the ocean gyre circulation. Here we propose an intercomparison of vorticity equations for the depth‐integrated flow applied to ocean models. We review four distinct variants of the BV balances, each giving access to diagnostic equations for the depth‐integrated ocean circulation, either meridional, across geostrophic contours or its divergence. We then formulate those balances in the Vorticity Balances in NEMO (VoBiN) diagnostic package aimed at the NEMO ocean platform and more generally C‐grid ocean models. We show that spatial discretization of the equations of motion have profound implications for those vorticity balances. Finally, we diagnose the main balances of a global ocean climate simulation. In all vorticity balances, topographic torques arise from interactions of the flow with slanting topography. We identify significant spurious topographic torques related to the model's C‐grid discretizations, and we suggest ways to address them. In the depth‐integrated and BV balances, bottom vortex stretching and bottom pressure torque drive the flow interaction with topography, respectively. Contrary to Sverdrup theory, the wind stress curl, although dominant in the interior Subtropics, becomes a minor player anywhere significant bottom velocities prevail. The geostrophic contour vorticity balance highlights the limits of barotropic models of the ocean circulation through the so‐called JEBAR term. Finally, the transport divergence vorticity balance stresses the limitations of Ekman plus geostrophic dynamics for the mass balance closure in ocean models. This framework should encourage ocean modellers to diagnose more routinely momentum and vorticity equations.
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献