Affiliation:
1. Pacific Northwest National Laboratory Richland WA USA
2. Lawrence Livermore National Laboratory Livermore CA USA
3. Oak Ridge National Laboratory Oak Ridge TN USA
4. Lawrence Berkeley National Laboratory Berkeley CA USA
5. Department of Land, Air, and Water Resources University of California‐Davis Davis CA USA
6. Argonne National Laboratory Lemont IL USA
Abstract
AbstractThe water cycle is an important component of the earth system and it plays a key role in many facets of society, including energy production, agriculture, and human health and safety. In this study, the Energy Exascale Earth System Model version 1 (E3SMv1) is run with low‐resolution (roughly 110 km) and high‐resolution (roughly 25 km) configurations—as established by the High Resolution Model Intercomparison Project protocol—to evaluate the atmospheric and terrestrial water budgets over the conterminous United States (CONUS) at the large watershed scale. The warm season water cycle slows down in the HR experiment relative to the LR, with decreasing fluxes of precipitation, evapotranspiration, atmospheric moisture convergence, and runoff. The reductions in these terms exacerbate biases for some watersheds, while reducing them in others. For example, precipitation biases are exacerbated at HR over the Eastern and Central CONUS watersheds, while precipitation biases are reduced at HR over the Western CONUS watersheds. The most pronounced changes with resolution to the water cycle come from reductions in precipitation and evapotranspiration. The reduction in evapotranspiration reduces the biases across nearly all of the CONUS. Additional exploratory metrics show improvements to water cycle extremes (both in precipitation and streamflow), fractional contributions of different storm types to total precipitation, and mountain snowpack.
Funder
Biological and Environmental Research
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献