Affiliation:
1. Division of Environmental Science and Engineering Pohang University of Science and Technology (POSTECH) Pohang South Korea
2. Korea Polar Research Institute Incheon South Korea
3. School of Earth and Environmental Sciences Seoul National University Seoul South Korea
4. Interdisciplinary Program in Artificial Intelligence Seoul National University Seoul South Korea
Abstract
AbstractThe physiological response to increasing CO2 concentrations will lead to land surface warming through a redistribution of the energy balance. As the Amazon is one of the most plant‐rich regions, the increase in surface temperature, caused by plant CO2 physiological forcing, is particularly large compared to other regions. In this study, we analyze the outputs of the 11 models in the Coupled Model Intercomparison Project Phase 6 to find out how CO2 physiological forcing amplifies Amazonian warming under elevated CO2 levels. With the CO2 concentration increase from 285 to 823 ppm, the Amazon temperature increased by 0.48 ± 0.42 K as a result of plant physiological forcing. Moreover, we assess the contributions of each climate feedback to the surface warming due to physiological forcing by quantifying climate feedbacks based on radiative kernels. Lapse rate feedback and cloud feedback, analyzed as the primary contributors, accounted for 53% and 37% of Amazon warming, respectively. The warming contributions of these two feedbacks also exhibit a significant spread, which contributes to the predictive uncertainty. The surface warming due to reduced evapotranspiration is larger than the upper tropospheric warming in the Amazon, resulting in surface warming by lapse rate feedback. In addition, cloud cover in the Amazon region decreases due to the reduced evapotranspiration. Decreased cloud cover amplifies surface warming through the shortwave cloud feedback. Furthermore, differences in circulation and local convection caused by physiological effect contribute to the inter‐model spread of the cloud feedback.
Funder
National Research Foundation of Korea
Korea Environmental Industry and Technology Institute
Publisher
American Geophysical Union (AGU)