Balancing Non‐CO2 GHG Emissions and Soil Carbon Change in U.S. Rice Paddies: A Retrospective Meta‐Analysis and Agricultural Modeling Study

Author:

Zhang Jingting1ORCID,Tian Hanqin23ORCID,You Yongfa2ORCID,Liang Xin‐Zhong14ORCID,Ouyang Zutao5ORCID,Pan Naiqing2ORCID,Pan Shufen26ORCID

Affiliation:

1. Earth System Science Interdisciplinary Center University of Maryland College Park MD USA

2. Center for Earth System Science and Global Sustainability Schiller Institute for Integrated Science and Society Boston College Chestnut Hill MA USA

3. Department of Earth and Environmental Sciences Boston College Chestnut Hill MA USA

4. Department of Atmospheric and Oceanic Science University of Maryland College Park MD USA

5. College of Forestry, Wildlife and Environment Auburn University Auburn AL USA

6. Department of Engineering Boston College Chestnut Hill MA USA

Abstract

AbstractU.S. rice paddies, critical for food security, are increasingly contributing to non‐CO2 greenhouse gas (GHG) emissions like methane (CH4) and nitrous oxide (N2O). Yet, the full assessment of GHG balance, considering trade‐offs between soil organic carbon (SOC) change and non‐CO2 GHG emissions, is lacking. Integrating an improved agroecosystem model with a meta‐analysis of multiple field studies, we found that U.S. rice paddies were the rapidly growing net GHG emission sources, increased 138% from 3.7 ± 1.2 Tg CO2eq yr−1 in the 1960s to 8.9 ± 2.7 Tg CO2eq yr−1 in the 2010s. CH4, as the primary contributor, accounted for 10.1 ± 2.3 Tg CO2eq yr−1 in the 2010s, alongside a notable rise in N2O emissions by 0.21 ± 0.03 Tg CO2eq yr−1. SOC change could offset 14.0% (1.45 ± 0.46 Tg CO2eq yr−1) of the climate‐warming effects of soil non‐CO2 GHG emissions in the 2010s. This escalation in net GHG emissions is linked to intensified land use, increased atmospheric CO2, higher synthetic nitrogen fertilizer and manure application, and climate change. However, no/reduced tillage and non‐continuous irrigation could reduce net soil GHG emissions by approximately 10% and non‐CO2 GHG emissions by about 39%, respectively. Despite the rise in net GHG emissions, the cost of achieving higher rice yields has decreased over time, with an average of 0.84 ± 0.18 kg CO2eq ha−1 emitted per kilogram of rice produced in the 2010s. The study suggests the potential for significant GHG emission reductions to achieve climate‐friendly rice production in the U.S. through optimizing the ratio of synthetic N to manure fertilizer, reducing tillage, and implementing intermittent irrigation.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3