Dynamics of Sputtered Neutral Sodium Atoms in the Near‐Mercury Space

Author:

Zhao J.‐T.1ORCID,Zong Q.‐G.12ORCID,Sun W.‐J.3ORCID,Zhou X.‐Z.1,Yue C.1ORCID,Wang S.1ORCID,Slavin J. A.4ORCID,Raines J. M.4ORCID,Wurz P.56ORCID,Ip W.‐H.27

Affiliation:

1. School of Earth and Space Sciences Peking University Beijing China

2. State Key Laboratory of Lunar and Planetary Sciences Macau University of Science and Technology (MUST) Macau China

3. Space Sciences Laboratory University of California, Berkeley Berkeley CA USA

4. Department of Climate and Space Sciences and Engineering University of Michigan Ann Arbor MI USA

5. Space Research and Planetary Sciences Physics Institute University of Bern Bern Switzerland

6. NCCR PlanetS University of Bern Bern Switzerland

7. Institute of Astronomy National Central University Jhongli Taiwan

Abstract

AbstractThe solar wind sputtering in the magnetospheric polar cusp is an important source of heavy atoms in Mercury’s exosphere and magnetosphere. However, the majority of ejected atoms are neutral, undergoing an extended period before photoionization occurs. In this study, we employ an ab initio simulation to investigate the behavior of sodium (Na) atoms prior to their photoionization. Our results reveal that overall only approximately 2.7% of the sputtered atoms contribute to magnetospheric ions, while the vast majority of these ions (∼82.9%) escape into interplanetary space. The remaining fraction (14.4%) eventually returns to the planetary surface. For Na atoms ionized inside the magnetosphere, a larger proportion of Na+ (53.5%) is supplied to the magnetotail compared to the polar cusp (39.4%), which is due to the tailward acceleration caused by solar radiation. Additionally, the remaining Na+ (7.1%) contributes to the dayside ring current region, as demonstrated by the observation of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Our research introduces a perspective on Na+ transport in the magnetosphere that complements and coexists with traditional mechanisms.

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3