Microbial Assemblages and Metabolic Activity in Organic‐Rich Subterranean Estuaries: Impact of Climate and Land Use Changes

Author:

Adyasari Dini12ORCID,Dimova Natasha T.1ORCID,Ní Chadhain Sinéad M.3ORCID,Waska Hannelore4

Affiliation:

1. Department of Geological Sciences University of Alabama Tuscaloosa AL USA

2. Department of Marine and Coastal Environmental Science Texas A&M University at Galveston Galveston TX USA

3. Department of Biology University of South Alabama Mobile AL USA

4. Research Group for Marine Geochemistry (ICBM‐MPI Bridging Group) Institute for Chemistry and Biology of the Marine Environment (ICBM) School of Mathematics and ScienceCarl von Ossietzky Universität Oldenburg Oldenburg 26129 Germany

Abstract

AbstractMicrobial communities in subterranean estuaries mediate biogeochemical reactions of coastal groundwater discharging into the oceans; however, studies on their response to abrupt environmental changes caused by climate and land use alterations are still limited. In this study, we conducted a controlled laboratory study using combined geochemical and metagenomic approaches to investigate microbial structures and their metabolic pathways under a wide range of nitrate () inputs, saline solutions, and incubation times. These factors served as proxies for land use, salinization of the shallow aquifer, and climate changes. We found a highly reducing habitat and an amplification of genes related to denitrification, sulfate reduction, and methanogenesis processes. Core communities consisting of Clostridia, Bacilli, Alphaproteobacteria, Gammaproteobacteria, and Desulfobaccia were observed across all treatments. The metabolic prediction of plant‐derived organic matter (i.e., tannin and lignin) degradation was not affected by inputs or salinity because of it being implemented by core communities and the abundance of electron donors and acceptors. Quantification of denitrification genes shows that they are susceptible to inputs and seawater ions. Long‐term incubation allowed sufficient time for microbes to degrade less labile DOM, promoting the re‐release of buried solid phase organic matter into the active carbon cycle and increasing the relative abundance of biofilm or spore‐forming taxa while decreasing that of rare taxa. Our results illustrate the sensitivity of microbial assemblages to environmental changes and their capacity to altering the C and N cycles in coastal areas, further affecting coastal water quality and ecosystem‐scale biogeochemistry.

Funder

Deutsche Forschungsgemeinschaft

National Science Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3