Long‐Term Response of Peatland Carbon Exchange to Climatic Changes in the Hudson Bay Lowlands

Author:

Balogun Olalekan12ORCID,Bello Richard1ORCID,Higuchi Kaz1

Affiliation:

1. Department of Geography, Faculty of Environmental and Urban Change York University Toronto ON Canada

2. Department of Physics University of Toronto Toronto ON Canada

Abstract

AbstractNorthern peatlands have been a persistent net sink of atmospheric carbon (C) due to the greater rates of gross primary production (GPP) compared to ecosystem respiration (ER). Global warming has raised concerns about the C sink strength of northern environments. In the vast peatlands of the Hudson Bay Lowlands (HBL) region of Canada, warming‐induced changes in sea ice dynamics over the Bay have altered its advective influence on the adjacent lowlands. Despite our knowledge of the short‐term C exchange in these peatlands, there remain uncertainties in the long‐term combined response of GPP and ER to climate change. In this study, the satellite‐data‐driven Vegetation Photosynthesis and Respiration Model was employed to investigate the response of peatland GPP, ER, and net ecosystem exchange to temperature and moisture changes. The results show contrasting net CO2 exchange at the two peatland sites over the last 20 years, with the fen acting as a net C source (+24 g C m−2) to the atmosphere and the bog serving as a net C sink (−130 g C m−2). There is ample evidence that a warmer and wetter climate enhanced GPP more than ER, while cooler temperatures weakened the peatland net C sink, regardless of the moisture conditions. Additionally, the advective influence of Hudson Bay on the lowlands produced markedly different C dynamics between offshore and onshore winds, with higher respiration rates (12%–26%) during offshore winds. We discuss the implications for peatland C balance under more frequent onshore winds in the region.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3