Asymmetries in Snowfall, Emissivity, and Albedo of Mars' Seasonal Polar Caps: Mars Climate Sounder Observations

Author:

Gary‐Bicas C. E.12ORCID,Hayne P. O.1ORCID,Horvath T.13ORCID,Heavens N. G.4ORCID,Kass D. M.5ORCID,Kleinböhl A.5ORCID,Piqueux S.5ORCID,Shirley J. H.5ORCID,Schofield J. T.5,McCleese D. J.6

Affiliation:

1. Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder CO USA

2. Department of Geosciences Stony Brook University Stony Brook NY USA

3. Earth, Planetary and Space Sciences Department University of California Los Angeles CA USA

4. Atmospheric and Planetary Sciences Department Hampton University Hampton VA USA

5. NASA—Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA

6. Synoptic Science Pasadena CA USA

Abstract

AbstractThe stability of the residual carbon dioxide cap near the south pole of Mars is currently not well understood. The cap's survival depends on its radiation budget, controlled by the visible albedo and infrared emissivity. We investigated the role of CO2 snowfall in altering the albedo and emissivity, leading to the observed asymmetry in the net CO2 accumulation at the two poles. Uncontaminated snowfall increases albedo, and lowers emissivity, due to scattering by optically thick clouds and granular surface deposits. Data from the Mars Climate Sounder (MCS) show that fall and winter snowfall is correlated with higher springtime albedo at both poles. For the seasonal CO2 deposits in each polar region >60° latitude, we find mean albedo values of 0.39 in the north and 0.51 in the south, and winter 32‐μm emissivity values of 0.84 in the north and 0.87 in the south. Using a radiative transfer model and the MCS data, we find that the north polar deposits have ∼10× higher dust content than those in the south, explaining the ∼31% lower albedo of the north seasonal cap during spring. Our model shows that greater amounts of snowfall can explain the ∼4% lower emissivity of the north polar seasonal cap. These findings demonstrate that winter snowfall and dust transport affect the composition of Mars' seasonal ice caps and polar energy balance. Snowfall and dust loading are therefore important in modeling the CO2 cycle on Mars, as well as the planet's long‐term climate variations.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3