Testing a Hyperspectral, Bio‐Optical Approach to Identification of Phytoplankton Community Composition in the Chesapeake Bay Estuary

Author:

McKibben S. M.12ORCID,Schollaert Uz S.1ORCID,Palacios Sherry L.3

Affiliation:

1. NASA Postdoctoral Program/NASA Goddard Space Flight Center Greenbelt MD USA

2. University of Maryland, College of Computer, Mathematical, and Natural Sciences College Park MD USA

3. Department of Marine Science California State University Monterey Bay Monterey CA USA

Abstract

AbstractThe multi‐to hyperspectral evolution of satellite ocean color sensors is anticipated to enable satellite‐based identification of phytoplankton biodiversity, a key factor in aquatic ecosystem functioning and upper ocean biogeochemistry. In this work the bio‐optical Phytoplankton Detection with Optics (PHYDOTax) approach for deriving taxonomic (class‐level) phytoplankton community composition (PCC, e.g. diatoms, dinoflagellates) from hyperspectral information is evaluated in the Chesapeake Bay estuary on the U.S. East Coast. PHYDOTax is among relatively few optical‐based PCC differentiation approaches available for optically complex waters, but it has not yet been evaluated beyond the California coastal regime where it was developed. Study goals include: (a) testing the approach in a turbid estuary including novel incorporation of colored dissolved organic matter (CDOM) and non‐algal particles (NAP), and (b) performance assessment with both synthetic mixture and field data sets. Algorithm skill was robust on synthetic mixtures. Using field data, cryptophyte and/or cyanophyte phytoplankton groups were predicted, but diatom and dinoflagellate detection was not conclusive. For one field data set, small but significant improvements were observed in predicted PCC groups when tested with incorporation of CDOM and NAP into the algorithm, but not for the second field data set. Sensitivity to three hyperspectral‐relevant spectral resolutions (1, 5, 10 nm) was low for all field and synthetic data. PHYDOTax can identify some phytoplankton groups in the estuary using hyperspectral, field‐collected measurements, but validation‐quality data with broad temporospatial coverage are needed to determine whether the approach is robust enough for science applications.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3