Internal Tide Energy Transfers Induced by Mesoscale Circulation and Topography Across the North Atlantic

Author:

Bella Adrien1ORCID,Lahaye Noé1ORCID,Tissot Gilles1ORCID

Affiliation:

1. INRIA Rennes Bretagne Atlantique & IRMAR—UMR CNRS 6625 Rennes France

Abstract

AbstractThe interactions between the internal tide and the mesoscale circulation are studied from the internal tide energy budget perspective. To that end, the modal energy budget of the internal tide is diagnosed using a high resolution numerical simulation covering the North Atlantic. Compared to the topographic contribution, the advection of the internal tide by the low‐frequency flow component and the horizontal and vertical shear are found to be significant at global scale, while the buoyancy contribution is important locally. The advection of the internal tide by the low‐frequency currents is responsible for a net energy transfer from the large scale to smaller scale internal tide, without exchanges with the low‐frequency flow. On the opposite, the shear of the mesoscale circulation and the buoyancy field are responsible for exchanges between the internal tide and the low‐frequency flow. The importance of the shear increases in the northernmost part of the domain, and a partial compensation between the buoyancy and the shear contributions is found in some areas of the North Atlantic, such as in the Gulf Stream region. In addition, the temporal variability of these energy transfers is investigated. In contrast to topographic scattering, for which the spring‐neap cycle is the dominant frequency, the energy transfer terms driven by low‐frequency motions in areas of strong mesoscale activity are also modulated by variations of the low‐frequency current spatial distribution.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3