Elaborating the Atmospheric Transformation of Combined and Free Amino Acids From the Perspective of Observational Studies

Author:

Xu Yu12ORCID,Lin Xi1,Sun Qi‐Bin3ORCID,Xiao Hong‐Wei12ORCID,Xiao Hao12,Xiao Hua‐Yun12ORCID

Affiliation:

1. School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China

2. Shanghai Yangtze River Delta Eco‐Environmental Change and Management Observation and Research Station Ministry of Science and Technology Ministry of Education Shanghai China

3. Dongguan Meteorological Bureau Dongguan China

Abstract

AbstractProteinaceous matter (PrM) is a substantial component of bioaerosols. Although numerous studies have examined the characteristics and sources of PrM in the atmosphere, its interactions with atmospheric oxidants remain uncertain. A 1‐year observation of PrM characteristics in PM2.5 was performed in both urban Nanchang (eastern China) and suburban Guiyang (southwestern China), respectively. Glycine was the dominant free amino acid (FAA) species in urban Nanchang. In contrast, proline dominated both total free amino acids (FAAs) and total combined amino acids (CAAs) in suburban Guiyang. We found that oxidative degradation can significantly promote the release of FAAs, especially glycine, from CAAs in Nanchang. The controlled experiment on protein oxidation by hydroxyl radical suggested that the contribution of free glycine to the total FAA fraction tended to increase during the oxidative degradation of CAAs, supporting the predominance of glycine in FAAs in Nanchang and most previous observations. The composition of FAAs was mainly influenced by primary sources in suburban Guiyang with weak atmospheric degradation of PrM. These results suggest that the degradation of aerosol PrM by atmospheric oxidants can be responsible for the difference in FAA composition between the biosphere and the atmosphere, and also imply that the oxidative degradation of aerosol PrM may be a potential source of secondary organic nitrogen compounds in aerosols. Thus, this study can improve the current understanding of the composition characteristics of PrM in the biosphere and the atmosphere, as well as the liquid phase reactions of proteinaceous compounds with atmospheric oxidants.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3