The Sphericity Paradox and the Role of Hoop Stresses in Free Subduction on a Sphere

Author:

Chaillat Stéphanie1,Gerardi Gianluca23ORCID,Li Yida3,Chamolly Alexander45ORCID,Li Zhong‐Hai6ORCID,Ribe Neil M.3ORCID

Affiliation:

1. Lab POems ENSTA‐UMA Palaiseau France

2. Centre de Géosciences Mines ParisTech Fontainebleau France

3. Lab FAST Université Paris‐Saclay CNRS Orsay France

4. Developmental and Stem Cell Biology Department Institut Pasteur Université de Paris CNRS UMR3738 Paris France

5. Laboratoire de Physique de l’École normale supérieure ENS Université PSL CNRS Sorbonne Université Université Paris Cité Paris France

6. Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China

Abstract

AbstractOceanic plates are doubly curved spherical shells, which influences how they respond to loading during subduction. Here we study a viscous fluid model for gravity‐driven subduction of a shell comprising a spherical plate and an attached slab. The shell is 100–1,000 times more viscous than the upper mantle. We use the boundary‐element method to solve for the flow. Solutions of an axisymmetric model show that the effect of sphericity on the flexure of shells is greater for smaller shells that are more nearly flat (the “sphericity paradox”). Both axisymmetric and three‐dimensional models predict that the deviatoric membrane stress in the slab should be dominated by the longitudinal normal stress (hoop stress), which is typically about twice as large as the downdip stress and of opposite sign. Our models also predict that concave‐landward slabs can exhibit both compressive and tensile hoop stress depending on the depth, whereas the hoop stress in convex slabs is always compressive. We test these two predictions against slab shape and earthquake focal mechanism data from the Mariana subduction zone, assuming that the deviatoric stress in our flow models corresponds to that implied by centroid moment tensors. The magnitude of the hoop stress exceeds that of the downdip stress for about half the earthquakes surveyed, partially verifying our first prediction. Our second prediction is supported by the near‐absence of earthquakes under tensile hoop stress in the portion of the slab having convex geometry.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3