An Evaluation of Cloud‐Precipitation Structures in Mixed‐Phase Stratocumuli Over the Southern Ocean in Kilometer‐Scale ICON Simulations During CAPRICORN

Author:

Ramadoss Veeramanikandan1ORCID,Pfannkuch Kevin1ORCID,Protat Alain23ORCID,Huang Yi45ORCID,Siems Steven67ORCID,Possner Anna1ORCID

Affiliation:

1. Institute for Atmospheric and Environmental Sciences Goethe University Frankfurt Germany

2. Australian Bureau of Meteorology Melbourne VIC Australia

3. Australian Antarctic Program Partnership Institute for Marine and Antarctic Studies, University of Tasmania Hobart TAS Australia

4. School of Geography Earth and Atmospheric Sciences The University of Melbourne Melbourne VIC Australia

5. Australian Research Council Centre of Excellence for Climate Extremes (CLEX) Melbourne VIC Australia

6. School of Earth, Atmosphere and Environment Monash University Clayton VIC Australia

7. Securing Antarctica's Environmental Future Monash University Clayton VIC Australia

Abstract

AbstractA persistent shortwave radiative bias of Southern Ocean (SO) clouds in climate models is strongly associated with incorrect cloud phase representation, which impacts precipitation. Measurements characterizing precipitation in low‐level mixed‐phase clouds, which frequently form over the SO, are rare, and our understanding of precipitation efficacy within these clouds remains limited. The simulated surface precipitation bias has an indirect effect on determining global climate sensitivity and a direct impact on the hydrological cycle. This study investigates the representation of low clouds, cloud variability, and precipitation statistics over the SO in real‐case Icosahedral Nonhydrostatic (ICON) simulations at the kilometer scale. The simulations are contrasted with 48 hr of continuous shipborne observations of open and closed‐cell stratocumuli, south of Tasmania. Our simulations show the significance of heavily rimed particle formation, their in‐cloud growth, and subcloud melting to capture the observed cloud‐precipitation vertical structure. In addition, supercooled drizzle formation impacts the vertical structure and precipitation statistics. ICON captures the observed intermittency of precipitation even at a standard vertical resolution of 200 m in the boundary layer but only captures the observed sparse distribution of intense precipitation (>1 mm hr−1) when the maximum vertical resolution is reduced to 100 m. However, the simulations of the 2‐day accumulated precipitation and the radiative effect are largely insensitive to the vertical resolution. The cloud reflectivity of the broken cloud deck is underestimated due to negative biases in cloud optical depth.

Funder

Bundesministerium für Bildung und Forschung

Deutscher Akademischer Austauschdienst

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3