Climate Variability and Glacier Dynamics Linked to Fjord Productivity Changes Over the Last ca. 3300 Years in Nuup Kangerlua, Southwest Greenland

Author:

Oksman M.1ORCID,Kvorning A. B.1,Pearce C.2ORCID,Korsgaard N. J.1ORCID,Lea J. M.3,Seidenkrantz M.‐S.2ORCID,Ribeiro S.1ORCID

Affiliation:

1. Department of Glaciology and Climate Geological Survey of Denmark and Greenland (GEUS) Copenhagen Denmark

2. Paleoceanography and Paleoclimate Group, Arctic Research Centre, and iClimate Centre, Department of Geoscience Aarhus University Aarhus C Denmark

3. Department of Geography and Planning School of Environmental Sciences, University of Liverpool Liverpool UK

Abstract

AbstractGreenlandic fjords, located between the ice sheet and the ocean, are dynamic systems that can sustain highly variable levels of primary productivity and are sensitive to climate change. In our current climate trajectory, meltwater discharge is expected to significantly increase but its long‐term effects on fjord productivity are still poorly constrained. Paleo‐archives can offer valuable insights into long‐term effects. Here, we present two marine sediment core records from Nuup Kangerlua, Southwest Greenland. Our goal is to better understand to what extent, and on what time‐scales, climate fluctuations and associated glacier dynamic changes have impacted fjord productivity over the past ca. 3300 years. Our multiproxy records include diatom fluxes and assemblage composition, sediment biogeochemistry, and grain‐size distribution. Our study reveals that fjord productivity is tightly linked to regional climate variability; relatively higher productivity levels coincided with mild climate periods whereas the climate cooling of the last millennium led to a decrease in productivity. The diatom records suggest that lower productivity is associated with shorter or less intense summer blooms, increased sea‐ice cover and/or a stratified water column. Diatom assemblages demonstrate cold sea‐surface conditions around 1600 CE that might be linked to local advance of glaciers. Cold conditions and decreasing productivity culminated at 1850 CE, when glaciers in the fjord retreated and high glacial meltwater discharge would have altered the fjord hydrography, likely leading to limited nutrient availability. Our long‐term records support the idea that changing climate and cryosphere conditions have a non‐linear impact on the productivity of Greenlandic fjords.

Funder

Geocenter Danmark

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3