Pan‐Antarctic Assessment of Ice Shelf Flexural Responses to Ocean Waves

Author:

Liang Jie1ORCID,Pitt Jordan P. A.1ORCID,Bennetts Luke G.1ORCID

Affiliation:

1. School of Computer and Mathematical Sciences University of Adelaide Adelaide SA Australia

Abstract

AbstractUnderstanding the drivers of iceberg calving from Antarctic ice shelves is important for future sea level rise projections. Ocean waves promote calving by imposing stresses and strains on the shelves. Previous modeling studies of ice shelf responses to ocean waves have focused on highly idealized geometries with uniform ice thickness and a flat seabed. This study leverages on a recently developed mathematical model that incorporates spatially varying geometries, combined with measured ice shelf thickness and seabed profiles, to conduct a statistical assessment of how 15 Antarctic ice shelves respond to ocean waves over a broad range of relevant wave periods, from swell to infragravity waves to very long period waves. The results show the most extreme responses at a given wave period are generated by features in the ice shelves and/or seabed geometries, depending on the wave regime. Relationships are determined between the median ice shelf response and the median shelf front thickness or the median water cavity depth. The findings provide further evidence of the role of ocean waves in large‐scale calving events for certain ice shelves (particularly the Wilkins) and indicate a possible role of ocean waves in calving events for other shelves (Larsen C and Conger). Further, the relationships determined provide a method to assess the potential for increased calving as ice shelves evolve with climate change, and, hence, contribute to assessments of future sea level rise.

Funder

Australian Research Council

Australian Antarctic Division

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3