Geochemical and sedimentological control of the magnetic properties of hemipelagic sediments

Author:

Karlin Robert,Levi Shaul

Abstract

Owing to their high sedimentation rates and wide areal extent, hemipelagic sediments along continental borderlands are potentially important high‐resolution recorders of geomagnetic secular variation. To assess this possibility, we studied suboxic hemipelagic muds from the Oregon continental slope and anoxic laminated diatomaceous oozes from the Gulf of California. These sediments were rapidly deposited, with average sedimentation rates of 121 and 135 cm/kyr, respectively. Bulk sediment sedimentological and geochemical analyses indicate that the two areas represent contrasting depositional regimes. The remanence in both environments resides in fine‐grained magnetite particles, although minor amounts of hematite were observed in the topmost Gulf of California sediments. Despite first‐order differences, the sediments from both areas show similar downcore patterns of systematic increases in solid sulfur (mainly as pyrite), dramatic decreases in natural (NRM), anhysteretic, and isothermal remanent magnetization, intensities, and accompanying shifts in the magnetic stabilities. These changes are consistent with reduction and dissolution of the ferrimagnetic iron oxides with depth due to early diagenesis of organic matter. The magnetic grain size distribution first appears to rapidly coarsen downcore as the smallest and most abundant grains are removed, then slowly grows finer as the remaining particles dissolve. No evidence was observed for authigenic formation of magnetite. Provided sufficient concentration and stability of the detrital magnetic particles, paleomagnetic directions can survive this dissolution diagenesis. However, relative paleointensity determinations based on normalization of NRM by concentration in related parameters will give erroneous estimates of paleofield behavior in such diagenetically altered sediments.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3