Continental Residual Topography Extracted From Global Analysis of Crustal Structure

Author:

Stephenson Simon N.1ORCID,Hoggard Mark J.2ORCID,Holdt Megan C.3ORCID,White Nicky3ORCID

Affiliation:

1. Department of Earth Sciences University of Oxford Oxford UK

2. Research School of Earth Sciences Australian National University Canberra ACT Australia

3. Bullard Laboratories Department of Earth Sciences University of Cambridge Cambridge UK

Abstract

AbstractContinental topography is dominantly controlled by a combination of crustal thickness and density variations. Nevertheless, it is clear that some additional topographic component is supported by the buoyancy structure of the underlying lithospheric and convecting mantle. Isolating these secondary sources is not straightforward, but provides valuable information about mantle dynamics. Here, we estimate and correct for the component of topographic elevation that is crustally supported to obtain residual topographic anomalies for the major continents, excluding Antarctica. Crustal thickness variations are identified by assembling a global inventory of 26,725 continental crustal thickness estimates from local seismological data sets (e.g., wide‐angle/refraction surveys, calibrated reflection profiles, receiver functions). In order to convert crustal seismic velocity into density, we develop a parametrization that is based upon a database of 1,136 laboratory measurements of seismic velocity as a function of density and pressure. In this way, 4,120 new measurements of continental residual topography are obtained. Observed residual topography mostly varies between ±1 and 2 km on wavelengths of 1,000–5,000 km. Our results are generally consistent with the pattern of residual depth anomalies observed throughout the oceanic realm, with long‐wavelength free‐air gravity anomalies, and with the distribution of upper mantle seismic velocity anomalies. They are also corroborated by spot measurements of emergent marine strata and by the global distribution of intraplate magmatism that is younger than 10 Ma. We infer that a significant component of residual topography is generated and maintained by a combination of lithospheric thickness variation and sub‐plate mantle convection. Lithospheric composition could play an important secondary role, especially within cratonic regions.

Publisher

American Geophysical Union (AGU)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3