Deciphering Clues Regarding Magma Composition Encoded in Quartz‐Hosted Embayments and Melt Inclusions Through Direct Numerical Simulations

Author:

Wei Zihan1ORCID,Ruefer Anna C.2,Pamukcu Ayla S.12ORCID,Suckale Jenny134ORCID

Affiliation:

1. Department of Geophysics Stanford University Stanford CA USA

2. Earth and Planetary Sciences Department Stanford University Stanford CA USA

3. Institute for Computational and Mathematical Engineering Stanford University Stanford CA USA

4. Department of Civil and Environmental Engineering Stanford University Stanford CA USA

Abstract

AbstractCrystal‐hosted melt embayments and melt inclusions partially record magmatic processes at depth, but it is not always obvious how to interpret this record. One impediment is our incomplete understanding of how embayments and melt inclusions form. In this study, we investigate the formation mechanism of embayments and melt inclusions during quartz growth to quantify the relationship between the compositions of the entrapped and average melt. We study the growth of embayments and inclusions through direct numerical simulations that couple the growth of a crystal surface with the evolution of the concentrations of incompatible components in the surrounding melt. We find that H2O is more enriched in the interior of defects on crystal surface compared to the exterior. The resultant lower disequilibrium in the defect interior causes lower growth rate than in the exterior, elongating the defect into an embayment. If crystal growth stops, the composition in the embayment equilibrates with the average melt within days to months. If crystal growth continues until the embayment neck closes, a melt inclusion forms. The melt entrapped by both embayments and melt inclusions is enriched in incompatible components, such as H2O and CO2. In addition to inclusion size, the enrichment of incompatible components in melt inclusions also depends on component diffusivity and the crystal growth regime. High‐diffusivity components like H2O have similar enrichment levels in all scenarios, while lower‐diffusivity components like CO2 are more enriched in melt inclusions with smaller sizes or formed in continuous crystal growth.

Funder

Stanford University

National Science Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3