The remote sensing of ocean primary productivity: Use of a new data compilation to test satellite algorithms

Author:

Balch William,Evans Robert,Brown Jim,Feldman Gene,McClain Charles,Esaias Wayne

Abstract

We tested global pigment and primary productivity algorithms based on a new data compilation of over 12,000 stations occupied mostly in the northern hemisphere, from the late 1950's to 1988. The results showed high variability of the fraction of total pigment contributed by chlorophyll a (ρ), which is required for subsequent predictions of primary productivity. Two models, which predict pigment concentration normalized to attenuation length or euphotic depth, were checked against 2,800 vertical profiles of pigments (chlorophyll a, phaeopigment and total pigment). Phaeopigments consistently showed maxima at about one optical depth below the chlorophyll maxima. We also checked the global Coastal Zone Color Scanner (CZCS; daily 20km resolution) archive for data coincident with the sea truth data. A regression of satellite‐derived pigment versus ship‐derived pigment had a coefficient of determination (r2) of 0.40 (n=731 stations). The satellite underestimated the true pigment concentration in mesotrophic and oligotrophic waters (< 1 mg pigment m−3) and overestimated the pigment concentration in eutrophic waters (> 1 mg pigment m‐3). The error in the satellite estimate showed no trends with time between 1978 and 1985. In general the variability of the satellite retrievals increased with pigment concentration. Several productivity algorithms were tested which utilize information on the photoadaptive parameters, biomass and optical parameters for predicting integral production. The most reliable algorithm which explained 67% of the variance in integral production for 1676 stations suggested that future success in deriving primary productivity from remotely sensed data will rely on accurate retrievals of “living” biomass from satellite data, as well as the prediction of at least one photoadaptive parameter such as maximum photosynthesis.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3