Affiliation:
1. Marine Renewable Energies Lab Offshore Engineering Group Department of Hydraulic Engineering Delft University of Technology Delft The Netherlands
2. Laboratoire d’Océanographie Physique et Spatiale University Brest CNRS IFREMER IRD Brest France
Abstract
AbstractNumerical wave models have been developed to reproduce the evolution of waves generated in all directions and over a wide range of wavelengths. The amount of wave energy in the different directions and wavelength is the result of a number of physical processes that are not well understood and that may not be represented in parameterizations. Models have generally been tuned to reproduce dominant wave properties: significant wave height, mean direction, dominant wavelengths. A recent update in wave dissipation parameterizations has shown that it can produce realistic energy levels and directional distribution for shorter waves too. Here, we show that this new formulation of the wave energy sink can reproduce the variability of measured infrasound power below a frequency of 2 Hz, associated with a large energy level of waves propagating perpendicular to the wind, for waves with frequencies up to 1 Hz. The details are sensitive to the balance between the non‐linear transfer of energy away from the wind direction, and the influence of dominant and relatively long waves on the dissipation of shorter waves in other directions.
Publisher
American Geophysical Union (AGU)
Subject
Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Geochemistry and Petrology,Geophysics,Oceanography
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献