A Binary Grey Wolf Optimizer with Mutation for Mining Association Rules

Author:

Heraguemi Kamel EddineORCID,Kamel NadjetORCID,Mafarja MajdiORCID

Abstract

In this decade, the internet becomes indispensable in companies and people life. Therefore, a huge quantity of data, which can be a source of hidden information such as association rules that help in decision-making, is stored. Association rule mining (ARM) becomes an attractive data mining task to mine hidden correlations between items in sizeable databases. However, this task is a combinatorial hard problem and, in many cases, the classical algorithms generate extremely large number of rules, that are useless and hard to be validated by the final user. In this paper, we proposed a binary version of grey wolf optimizer that is based on sigmoid function and mutation technique to deal with ARM issue, called BGWOARM. It aims to generate a minimal number of useful and reduced number of rules. It is noted from the several carried out experimentations on well-known benchmarks in the field of ARM, that results are promising, and the proposed approach outperforms other nature-inspired algorithms in terms of quality, number of rules, and runtime consumption.

Publisher

Moldova State University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3