Numerical Simulation of Blood Flow in Aortoiliac Bifurcation with Increasing Degree of Stenosis

Author:

Abstract

The worldwide lethal prevalence of atherosclerotic diseases has made it a crucial topic of research, the descending aorta is a major artery with complex geometry involving curvature, branches, and bifurcation leading to common iliac arteries. This paper aims to scrutinize the intricate blood flow patterns and the flow parameters with the increasing degree of stenosis in the infrarenal aorta, which has been accomplished through computational fluid dynamics modeling. A 3D CAD model of the healthy aortoiliac bifurcation was constructed from MR images, and three diseased models with 32%, 47%, and 71% occlusion in the infrarenal aorta region were constructed. At the inlet, pulsatile velocity and at the outlet pressure boundary conditions were applied, blood was considered Newtonian and turbulence was modeled using Large Eddy Simulation (LES). The numerical simulation was carried out using finite volume method on ANSYS. The predicted hemodynamic parameters like velocity, wall shear stress (WSS), oscillating shear index (OSI), Q-Criterion and turbulence intensity were post-processed for all the models, the analysis of which provides an insight into the myriad processes involved in the inception and evolution of atherosclerosis. The transition of blood flow from laminar to turbulent with increase in the degree of stenosis is a very eminent feature of this study, turbulence is identified in cases with 47%, and 71% occlusion and is dominant in the latter.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3