Analysis of the Relationship Between Cross Capital Flows and Stock Exchange Index with Machine Learning

Author:

Akusta Ahmet1ORCID

Affiliation:

1. KONYA TEKNİK ÜNİVERSİTESİ

Abstract

This paper investigates forecasting the BIST100 stock index using cross-capital flow analysis. It employs feature engineering and the Orthogonal Matching Pursuit (OMP) model to navigate the intricacies of financial time series prediction. The study meticulously selects features such as lagged values, moving averages, and volatility metrics, normalized to ensure unbiased model impact. The OMP model is carefully optimized to handle the dimensionality of financial data, avoiding overfitting through a sparsity constraint. This approach yields an R-squared score of 0.88, indicating a solid capability to capture index variance. Visual comparisons between actual and predicted values further validate the model's accuracy. The paper highlights the importance of methodological precision in developing models capable of discerning complex patterns, offering valuable insights for investment strategies. Implications of the study show that cross-capital movements and macroeconomic variables are a good fit with ML to predict the Stock Market despite the complexity of financial markets.

Publisher

Abant Izzet Baysal University Graduate School of Social Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3