Author:
Yangfan Zhou ,Mengjiao Hu ,Xiaoyan Chen ,Shuai Wang ,Jingke Li ,Lina Sa ,Li Li ,Jiaqi Huang ,Hongqiang Cheng ,Hu Hu
Abstract
Elucidating the regulation mechanism of integrin αIIbβ3 is key to understand platelet biology and thrombotic diseases. Previous in vitro studies have implicated a role of migfilin in the support of platelet αIIbβ3 activation, however, contribution of migfilin to thrombosis and hemostasis in vivo and a detailed mechanism of migfilin in platelets are not known. In this study, with migfilin deletion (migfilin-/-) mice, we report that migfilin is a pivotal positive regulator of hemostasis and thrombosis. Migfilin-/- mice showed a nearly doubled tail-bleeding time and a prolonged occlusion time in Fecl3-induced mesenteric arteriolar thrombosis. Migfilin deficiency impedes platelet thrombi formation on collagen surface and impairs platelet aggregation and dense-granule secretion. Supported by characteristic functional readings and phosphorylation status of distinctive signaling molecules in the bidirectional signaling processes of αIIbβ3, the functional defects of migfilin-/- platelets appear to be mechanistically associated with a compromised outside-in signaling, rather than inside-out signaling. A synthesized cell-permeable migfilin peptide harboring filamin A binding sequence rescued the defective function and phosphorylation of signaling molecules of migfilin-/- platelets. Finally, migfilin does not influence the binding of filamin A and β3 subunit of αIIbβ3 in resting platelets, but hampers the re-association of filamin A and β3 during the conduct of outside-in signaling, suggesting that migfilin functions through regulating the interaction dynamics of αIIbβ3 and filamin A in platelets. Our study enhances the current understanding of platelet integrin αIIbβ3-mediated outside-in signaling and proves that migfilin is an important regulator for platelet activation, hemostasis and thrombosis.
Publisher
Ferrata Storti Foundation (Haematologica)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献