The interactome of the N-terminus of band 3 regulates red blood cell metabolism and storage quality

Author:

Issaian Aaron,Hay Ariel,Dzieciatkowska Monika,Roberti Domenico,Perrotta Silverio,Darula Zsuzsanna,Redzic Jasmina,Busch Micheal P.,Page Grier P.,Rogers Stephen C.,Doctor Allan,Hansen Kirk C.,Eisenmesser Elan Z,Zimring James C,D’Alessandro Angelo

Abstract

Band 3 (anion exchanger 1 - AE1) is the most abundant membrane protein in red blood cells (RBCs), the most abundant cell in the human body. A compelling model posits that - at high oxygen saturation - the N-term cytosolic domain of AE1 binds to and inhibits glycolytic enzymes, thus diverting metabolic fluxes to the pentose phosphate pathway to generate reducing equivalents. Dysfunction of this mechanism occurs during RBC aging or storage under blood bank conditions, suggesting a role for AE1 in the regulation of blood storage quality and efficacy of transfusion – a life-saving intervention for millions of recipients worldwide. Here we leverage two murine models carrying genetic ablations of AE1 to provide mechanistic evidence of its role in the regulation of erythrocyte metabolism and storage quality. Metabolic observations in mice recapitulated those in a human subject lacking expression of AE11-11 (band 3 Neapolis), while common polymorphisms in the region coding for AE11-56 correlate with increased susceptibility to osmotic hemolysis in healthy blood donors. Through thermal proteome profiling and cross-linking proteomics, we provide a map of the RBC interactome, with a focus on AE11-56 and validate recombinant AE1 interactions with glyceraldehyde 3-phosphate dehydrogenase (GAPDH). As a proof-of-principle and further mechanistic evidence of the role of AE1 in the regulation of redox homeostasis of stored RBCs, we show that incubation with a cell-penetrating AE11-56 peptide can rescue the metabolic defect in glutathione recycling and boost post-transfusion recoveries of stored RBCs from healthy human donors and genetically ablated mice.

Publisher

Ferrata Storti Foundation (Haematologica)

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3