Application of machine vision in drying process modeling of carrot slices

Author:

Basu Gourab,Dhalsamant Kshanaprava,Tripathy Punyadarshini Punam,Sharma Sonu

Abstract

In this current research, the drying characteristics of carrot slices dried in a convective hot-air dryer are analyzed employing image analysis to determine the most significant factor. From the acquired images, nine parameters viz. redness (R), greenness (G), blueness (B), lightness (L), redness (a), yellowness (b), energy, entropy, and upper surface area of carrot slices were calculated using the algorithm developed in MATLAB 2015a. Boruta feature selection algorithm in the R console showed lightness, redness, and energy were the most significant features among calculated parameters. Additionally, single-layer feed-forward artificial neural network (ANN) architecture with three inputs (hot air temperature, thickness of slices, drying time), and outputs namely lightness, redness, and energy with one hidden layer was used to model input variables to that of responses. Multiple regression models are employed to optimize the drying condition by further assessing the behavior of response variables with hot air temperature and thickness of slices as inputs and lightness, redness, and energy as outputs. The lightness and redness of samples are found to be decreasing with an increase in temperature and a decrease in thickness. Whereas, the effect of these input parameters on energy, the measure of homogeneity of the product surface, is found to be reversed to that of the effect on lightness and redness. Lightness and redness are set to be highest, whereas energy was kept to be lowest. Convective hot air temperature of 60 ℃ and 7 mm thickness sample was found to provide the best quality product within the experiment range.

Publisher

Academic Publishing Pte. Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3