Medical image classification using a quantified hazard ratio and a multilayer fuzzy approach

Author:

Akula Kishore Kumar,Akula Monica,Gegov Alexander

Abstract

We previously developed two AI-based medical automatic image classification tools using a multi-layer fuzzy approach (MFA and MCM) to convert image-based abnormality into a quantity. However, there is currently limited research on using diagnostic image assessment tools to statistically predict the hazard due to the disease. The present study introduces a novel approach that addresses a substantial research gap in the identification of hazard or risk associated with a disease using an automatically quantified image-based abnormality. The method employed to ascertain hazard in an image-based quantified abnormality was the cox proportional hazard (PH) model, a unique tool in medical research for identifying hazard related to covariates. MFA was first used to quantify the abnormality in CT scan images, and hazard plots were utilized to visually represent the hazard risk over time. Hazards corresponding to image-based abnormality were then computed for the variables, ‘gender,’ ‘age,’ and ‘smoking-status’. This integrated framework potentially minimizes false negatives, identifies patients with the highest mortality risk and facilitates timely initiation of treatment. By utilizing pre-existing patient images, this method could reduce the considerable costs associated with public health research and clinical trials. Furthermore, understanding the hazard posed by widespread global diseases like COVID-19 aids medical researchers in prompt decision-making regarding treatment and preventive measures.

Publisher

Academic Publishing Pte. Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3