Applications of reinforcement learning, machine learning, and virtual screening in SARS-CoV-2-related proteins

Author:

Matsuzaka Yasunari,Yashiro Ryu

Abstract

Similarly, to all coronaviruses, SARS-CoV-2 uses the S glycoprotein to enter host cells, which contains two functional domains: S1 and S2 receptor binding domain (RBD). Angiotensin-converting enzyme 2 (ACE2) is recognizable by the S proteins on the surface of the SARS-CoV-2 virus. The SARS-CoV-2 virus causes SARS, but some mutations in the RBD of the S protein markedly enhance their binding affinity to ACE2. Searching for new compounds in COVID-19 is an important initial step in drug discovery and materials design. Still, the problem is that this search requires trial-and-error experiments, which are costly and time-consuming. In the automatic molecular design method based on deep reinforcement learning, it is possible to design molecules with optimized physical properties by combining a newly devised coarse-grained representation of molecules with deep reinforcement learning. Also, structured-based virtual screening uses protein 3D structure information to evaluate the binding affinity between proteins and compounds based on physicochemical interactions such as van der Waals forces, Coulomb forces, and hydrogen bonds, and select drug candidate compounds. In addition, AlphaFold can predict 3D protein structures, given the amino acid sequence, and the protein building blocks. Ensemble docking, in which multiple protein structures are generated using the molecular dynamics method and docking calculations are performed for each, is often performed independently of docking calculations. In the future, the AlphaFold algorithm can be used to predict various protein structures related to COVID-19.

Publisher

Academic Publishing Pte. Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3