Clinical symptoms and signs in hamsters during experimental infection with the SARS-CoV-2 virus (Coronaviridae: <i>Betacoronavirus</i>)

Author:

Tuyskanova Moldir S.ORCID,Zhugunissov Kuandyk D.ORCID,Ozaslan MehmetORCID,Myrzakhmetova Balzhan S.ORCID,Kutumbetov Lespek B.ORCID

Abstract

Introduction. At the beginning of December 2019, humanity has faced a new problem caused by coronavirus. In Hubei province of central China, epidemic events associated with severe primary viral pneumonia in humans began to develop. The isolated etiological agent was identified as a representative of Coronaviridae family. The global pandemic associated with the new coronavirus infection, acute respiratory syndrome type 2 (Severe acute respiratory syndrome 2, SARS-CoV-2), has become a challenge for humanity. Objective. In our work, we assessed the replicative ability and pathogenesis of the SARS-CoV-2 virus in hamsters. Materials and methods. Syrian hamsters (n=16) randomly divided into two groups were used in experiment. The first group was infected intranasally with the SARS-CoV-2 virus, strain SARS-CoV-2/human/KAZ/KZ_Almaty/2020 deposited in GenBank under number MZ379258.1. The second group remained as a control group. Clinical manifestations of the disease in hamsters were observed within 14 days. Samples were collected on days 3, 5, 7, 9, 12, and 14 postinfection. The obtained samples were tested for viral isolation in cell culture, histological examination and analysis of viral RNA by RT-PCR. Results. SARS-CoV-2 virus isolates showed efficient replication in the lungs of hamsters, causing pathological lung lesions in animals infected intranasally. Clinical manifestations of the disease in hamsters infected with this virus were characterized by a decrease in temperature and body weight, wetness and ruffled fur, and frequent stroking of the nasal planum. High virus titers were observed following the virus isolation in cell cultures from nasal, oral swabs and lungs of animals infected intranasally. Pathological autopsy demonstrated pathological changes in the lungs. Moreover, transmission by airborne droplets has been established when a healthy hamster was kept together with animals infected using the intranasal method. Conclusion. In conclusion, our study showed that the Syrian hamster model is a useful tool for studying the SARS-CoV-2 pathogenesis, as well as testing vaccine candidates against acute respiratory syndrome type 2.

Publisher

Central Research Institute for Epidemiology

Subject

Infectious Diseases,Virology,General Medicine

Reference30 articles.

1. Schalk A.F., Hawn M.C. An apparently new respiratory disease of baby chicks. J. Am. Vet. Med. Assoc. 1931; 78: 413–23.

2. Almeida J.D., Berry D.M., Cunningham C.H., Hamre D., Hofstad M.S., Mallucci L., et al. Virology: Coronaviruses. Nature. 1968; 220: 650. https://doi.org/10.1038/220650b0

3. Lvov D.K., ed. Viruses and Viral Infections of Humans and Animals. Handbook of Virology [Virusy i virusnye infektsii cheloveka i zhivotnykh. Rukovodstvo po virusologii]. Moscow: MIA; 2013. https://elibrary.ru/tlzmhf (in Russian)

4. Chuchalin A.G. Severe acute respiratory syndrome (SARS). Terapevticheskiy arkhiv. 2004; 76(3): 5–11. https://elibrary.ru/ojztgl (in Russian)

5. Shchelkanov M.Yu., Kolobukhina L.V., Lvov D.K. Human coronaviruses (Nidovirales, Coronaviridae): increased level of epidemic threat. Lechashchiy vrach. 2013; (10): 49–54. https://elibrary.ru/takhvr (in Russian)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3