Comparative study of the biological properties of influenza А virus mutants obtained by site-specific mutagenesis and the live influenza reassortant vaccine variant

Author:

Cherepovich Bogdan S.ORCID,Rtishchev Artem A.ORCID,Akopova Irina I.ORCID,Borisova Olga V.ORCID,Kost Vladimir Y.ORCID,Kutuzova Nina M.ORCID,Markushin Stanislav G.ORCID

Abstract

The aim of study was to carry out comparative investigation of biological properties of site-specific mutants of Influenza A virus and variant of live cold-adapted (CA) influenza reassortant vaccine. Materials and methods. The genetic stability of site-specific mutants (SSM) of the A/WSN/33 (H1N1) strain with ts (temperature sensitive)-mutations in polymerase genes was studied using a stress-test in MadinDarby Canine Kidney (MDCK) culture. A comparative study of immunogenicity of U2 and M26 mutants with the high genetic stability and the CA-reassortant with similar surface proteins was carried out. The increase in the antibody titer was investigated using enzyme-linked immunosorbent assay and the reaction of delayed hemagglutination. Ability of the studied viruses to induce type 1 interferon in A549 cells was determined using real-time polymerase chain reaction (real-time PCR). Results. It was shown that U2 and M26 mutants, which have 3 ts-mutations or more in polymerase genes have high genetic stability. It was found that U2 and M26 mutants induced a higher antibody titers than the CA reassortant in mice following the intranasal immunization. The ability of site-specific mutants and CA reassortant to induce type 1 interferon was also investigated. Mutants U2 and M26 increased the level of interferon to a greater extent than the CA-reassortant. Conclusion. The data obtained indicate that SSM U2 and M26 with 3 ts-mutations or more in the genome have a significant level of genetic stability. Mutants U2 and M26 have a higher immunogenicity and a higher ability to induce interferon in comparison with the CA reassortant. These facts allow us to conclude that SSM of the influenza virus with a set of mutations in polymerase genes can be considered as promising candidates for live influenza vaccines.

Publisher

Central Research Institute for Epidemiology

Subject

General Medicine,Medicine (miscellaneous)

Reference13 articles.

1. Parkin N.T., Chiu P., Coelingh K. Genetically engineered live attenuated influenza A virus vaccine candidates. J. Virol. 1997; 71(4): 2772–8. https://doi.org/10.1128/jvi.71.4.2772-2778.1997

2. Subbarao E.K., Park E.J., Lawson C.M., Chen A.Y., Murphy B.R., et al. Sequential addition of temperature-sensitive missense mutations into the PB2 gene of influenza A transfectant viruses can effect an increase in temperature sensitivity and attenuation and permits the rational design a genetically engineered live influenza A virus vaccine. J. Virol. 1995; 69(10): 5969–77. https://doi.org/10.1128/jvi.69.10.5969-5977.1995

3. Broadbent A.J., Santos C.P., Godbout R.A., Subbarao K. The temperature-sensitive and attenuation phenotypes conferred by mutations in the influenza virus PB2, PB1 and NP genes are influenced by the species of origin of the PB2 gene in reassortant viruses derived from Influenza A/California/07/2009 and A/WSN/33 viruses. J. Virol. 2014; 88(21): 12339–47. https://doi.org/10.1128/jvi.02142-14

4. Song H., Nieto G.R., Perez D.R. A new generation of modified live attenuated avian influenza viruses using a two-strategy combination as potential vaccine candidates. J. Virol. 2007; 81(17): 9238–48. https://doi.org/10.1128/jvi.00893-07

5. Hickman D., Hossain M.J., Song H., Araya Y., Solórzano A., Perez D.R. An avian live attenuated master backbone for potential use in epidemic and pandemic influenza vaccines. J. Gen. Virol. 2008; 89(Pt. 11): 2682–90. https://doi.org/10.1099/vir.0.2008/004143-0

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3