Peripheral Coding of Tonic Mechanical Cutaneous Pain: Comparison of Nociceptor Activity in Rat and Human Psychophysics

Author:

Andrew David1,Greenspan Joel D.1

Affiliation:

1. Department of Oral and Craniofacial Biological Sciences, University of Maryland Dental School, Baltimore, Maryland 21201

Abstract

These experiments investigated temporal summation mechanisms of tonic cutaneous mechanical pain. Human volunteers provided psychophysical estimates of pain intensity, which were compared with discharge patterns of rat cutaneous nociceptors tested with identical stimulus protocols. Human subjects made either intermittent or continuous ratings of pain intensity during stimulation of the skin between the thumb and first finger. Stimulus intensities of 25, 50, and 100 g were applied with a probe of contact area of 0.1 mm2 for 2 min. Pain perception significantly increased during stimulation (temporal summation) for the 50- and 100-g stimulus intensities. Sequential conduction block of the myelinated fibers supplying the stimulated skin was used to investigate the role of A-fiber mechanoreceptors and nociceptors in this temporal summation. Conduction block of the Aβ fibers resulted in an increase in mechanically evoked pain estimates and an increase in temporal summation, consistent with loss of Aβ-mediated inhibition. When only conduction in the unmyelinated fibers remained, pain estimates were reduced to the preblock levels, but temporal summation was still present. Electrophysiological recordings were made from filaments of the sciatic nerve supplying receptors in the plantar skin of barbiturate-anesthetized rats. Forty units fulfilled the identification criteria for nociceptors: 20 A-fiber and 20 C-fiber nociceptors. Each unit was characterized by recording its responses to graded mechanical and heat stimuli. Nociceptors were also tested with stimuli identical to those applied to the human subjects. The responses of all units to sustained mechanical stimuli were adaptive—that is, they exhibited a gradual decline in response with time. However, the time course of adaptation varied among units. All the C-fiber nociceptors and one-half of the A-fiber nociceptors had rapidly adapting responses. The remainder of the A-fibers displayed slowly adapting responses. One-third of all units also showed short-duration increases in firing rate during stimulation. The latency after stimulus onset of this rate acceleration was inversely related to stimulus intensity. Despite the apparent disparity between perceptual temporal summation and nociceptor adaptation, central and peripheral mechanisms are proposed that can reconcile the relationship between nociceptor activity and pain perception.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3