Control of Grasp Stability in Humans Under Different Frictional Conditions During Multidigit Manipulation

Author:

Burstedt Magnus K. O.1,Flanagan J. Randall2,Johansson Roland S.1

Affiliation:

1. Department of Integrative Medical Biology, Section for Physiology, Umeå University, SE-901 87 Umeå, Sweden; and

2. Department of Psychology, Queen's University, Kingston, Ontario K7L 3N6, Canada

Abstract

Control of grasp stability under different frictional conditions has primarily been studied in manipulatory tasks involving two digits only. Recently we found that many of the principles for control of forces originally demonstrated for two-digit grasping also apply to various three-digit grasps. Here we examine the control of grasp stability in a multidigit task in which subjects used the tips of the thumb, index, and middle finger to lift an object. The grasp resembled those used when lifting a cylindrical object from above. The digits either all contacted the same surface material or one of the digits contacted a surface material that was more, or less, slippery than that contacted by the other two digits. The three-dimensional forces and torques applied by each digit and the contact positions were measured along with the position and orientation of the object. The distribution of forces among the digits strongly reflected constraints imposed by the geometric relationship between the object's center of mass and the contact surfaces. On top of this distribution, we observed changes in force coordination related to changes in the combination of surface materials. When all digits contacted the same surface material, the ratio between the normal force and tangential load ( F n: L ratio) was similar across digits and scaled to provide an adequate safety margin against slip. With different contact surfaces subjects adapted the F n: L ratios at the individual digits to the local friction with only small influences by the friction at the other two digits. They accomplished this by scaling the normal forces similarly at all digits and changing the distribution of load among the digits. The surface combination did not, however, influence digit position, tangential torque, or object tilting systematically. The change in load distribution, rather, resulted from interplay between these factors, and the nature of this interplay varied between trials. That is, subjects achieved grasp stability with various combinations of fingertip actions and appeared to exploit the many degrees of freedom offered by the multidigit grasp. The results extend previous findings based on two-digit tasks to multidigit tasks by showing that subjects adjust fingertip forces at each digit to the local friction. Moreover, our findings suggest that subjects adapted the load distribution to the current frictional condition by regulating the normal forces to allow slips to occur early in the lift task, prior to object lift-off.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3