The effects of forearm position and contraction intensity on cortical and spinal excitability during a submaximal force steadiness task of the elbow flexors

Author:

Yacyshyn Alexandra F.1ORCID,Kuzyk Samantha1,Jakobi Jennifer M.1,McNeil Chris J.1

Affiliation:

1. School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada

Abstract

Elbow flexor force steadiness is less with the forearm pronated (PRO) compared with neutral (NEU) or supinated (SUP) and may relate to neural excitability. Although not tested in a force steadiness paradigm, lower spinal and cortical excitability was observed separately for biceps brachii in PRO, possibly dependent on contractile status at the time of assessment. This study aimed to investigate position-dependent changes in force steadiness as well as spinal and cortical excitability at a variety of contraction intensities. Thirteen males (26 ± 7 yr; means ± SD) performed three blocks (PRO, NEU, and SUP) of 24 brief (~6 s) isometric elbow flexor contractions (5, 10, 25 or 50% of maximal force). During each contraction, transcranial magnetic stimulation or transmastoid stimulation was delivered to elicit a motor-evoked potential (MEP) or cervicomedullary motor-evoked potential (CMEP), respectively. Force steadiness was lower in PRO compared with NEU and SUP ( P ≤ 0.001), with no difference between NEU and SUP. Similarly, spinal excitability (CMEP/maximal M wave) was lower in PRO than NEU (25 and 50% maximal force; P ≤ 0.010) and SUP (all force levels; P ≤ 0.004), with no difference between NEU and SUP. Cortical excitability (MEP/CMEP) did not change with forearm position ( P = 0.055); however, a priori post hoc testing for position showed excitability was 39.8 ± 38.3% lower for PRO than NEU at 25% maximal force ( P = 0.006). The data suggest that contraction intensity influences the effect of forearm position on neural excitability and that reduced spinal and, to a lesser extent, cortical excitability could contribute to lower force steadiness in PRO compared with NEU and SUP. NEW & NOTEWORTHY To address conflicting reports about the effect of forearm position on spinal and cortical excitability of the elbow flexors, we examine the influence of contraction intensity. For the first time, excitability data are considered in a force steadiness context. Motoneuronal excitability is lowest in pronation and this disparity increases with contraction intensity. Cortical excitability exhibits a similar pattern from 5 to 25% of maximal force. Lower corticospinal excitability likely contributes to relatively poor force steadiness in pronation.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Canada Foundation for Innovation/British Columbia Knowledge Development Fund

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3