Stability in a frontal plane model of balance requires coupled changes to postural configuration and neural feedback control

Author:

Bingham Jeffrey T.1,Choi Julia T.2,Ting Lena H.12

Affiliation:

1. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta; and

2. Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia

Abstract

Postural stability depends on interactions between the musculoskeletal system and neural control mechanisms. We present a frontal plane model stabilized by delayed feedback to analyze the effects of altered stance width on postural responses to perturbations. We hypothesized that changing stance width alters the mechanical dynamics of the body and limits the range of delayed feedback gains that produce stable postural behaviors. Surprisingly, mechanical stability was found to decrease as stance width increased due to decreased effective inertia. Furthermore, due to sensorimotor delays and increased leverage of hip joint torque on center-of-mass motion, the magnitudes of the stabilizing delayed feedback gains decreased as stance width increased. Moreover, the ranges of the stable feedback gains were nonoverlapping across different stance widths such that using a single neural feedback control strategy at both narrow and wide stances could lead to instability. The set of stable feedback gains was further reduced by constraints on foot lift-off and perturbation magnitude. Simulations were fit to experimentally measured kinematics, and the identified feedback gains corroborated model predictions. In addition, analytical gain margin of the linearized system was found to predict step transitions without the need for simulation. In conclusion, this model offers a method to dissociate the complex interactions between postural configuration, delayed sensorimotor feedback, and nonlinear foot lift-off constraints. The model demonstrates that stability at wide stances can only be achieved if delayed neural feedback gains decrease. This model may be useful in explaining both expected and paradoxical changes in stance width in healthy and neurologically impaired individuals.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3