Synchronization patterns suggest different functional organization in parietal reach region and dorsal premotor cortex

Author:

Chakrabarti Shubhodeep123,Martinez-Vazquez Pablo1,Gail Alexander1

Affiliation:

1. Bernstein Center for Computational Neuroscience, German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany;

2. Systems Neurophysiology Group, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany; and

3. Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany

Abstract

The parietal reach region (PRR) and dorsal premotor cortex (PMd) form part of the fronto-parietal reach network. While neural selectivity profiles of single-cell activity in these areas can be remarkably similar, other data suggest that both areas serve different computational functions in visually guided reaching. Here we test the hypothesis that different neural functional organizations characterized by different neural synchronization patterns might be underlying the putatively different functional roles. We use cross-correlation analysis on single-unit activity (SUA) and multiunit activity (MUA) to determine the prevalence of synchronized neural ensembles within each area. First, we reliably find synchronization in PRR but not in PMd. Second, we demonstrate that synchronization in PRR is present in different cognitive states, including “idle” states prior to task-relevant instructions and without neural tuning. Third, we show that local field potentials (LFPs) in PRR but not PMd are characterized by an increased power and spike field coherence in the beta frequency range (12–30 Hz), further indicating stronger synchrony in PRR compared with PMd. Finally, we show that neurons with similar tuning properties tend to be correlated in their random spike rate fluctuations in PRR but not in PMd. Our data support the idea that PRR and PMd, despite striking similarity in single-cell tuning properties, are characterized by unequal local functional organization, which likely reflects different network architectures to support different functional roles within the fronto-parietal reach network.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3