Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form

Author:

Desimone R.,Schein S. J.

Abstract

Area V4, a visuotopically organized area in prestriate cortex of the macaque, is the major source of visual input to the inferior temporal cortex, known to be crucial for object recognition. To examine the selectivity of cells in V4 for stimulus form, we quantitatively measured the responses of 322 cells to bars varying in length, width, orientation, and polarity of contrast, and sinusoidal gratings varying in spatial frequency, phase, orientation, and overall size. All of the cells recorded in V4 were located on the lower portion of the prelunate gyrus. Receptive fields were located almost exclusively within the representation of the central 5 degrees of the lower visual field, and receptive field size, in linear dimension, was 4-7 times greater than that in the corresponding representation of striate cortex (V1). Nearly all receptive fields consisted of overlapping dark and light zones, like “classic” complex fields in V1, but the relative strengths of the dark and light zones often differed. A few cells responded exclusively to light or dark stimuli. Many cells in V4 were selective for stimulus orientation, and a few were selective for direction of motion as well. Although the median orientation bandwidth of the orientation-selective cells (52 degrees) was wider than that reported for oriented cells in V1, approximately 8% of the oriented cells had bandwidths of less than 30 degrees, which is nearly as narrow as the most narrowly tuned cells in V1. The proportion of cells selective for direction of motion (13%) was not markedly different from that reported in V1. The large majority of V4 cells were tuned to the length and width of bars, and the “shape” of the optimal bar varied from cell to cell, as has been reported for cells in the dorsolateral visual area (DL) of the owl monkey, a possible homologue of V4 in the macaque. Preferred lengths and widths varied independently from approximately 0.05 to 6 degrees, with the smallest preferred bars about the size of the smallest receptive fields in V1 and the largest preferred bars larger than any fields in V1. The relationship between the size of the optimal bar and the size of the receptive field varied from cell to cell. Some cells, for example, responded best to bars much narrower or shorter than the field, whereas other cells responded best to bars that filled (but did not extend beyond) the excitatory field in the length, width, or both dimensions.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 568 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3