Transcriptional Paradigms in Mammalian Mitochondrial Biogenesis and Function

Author:

Scarpulla Richard C.

Abstract

Mitochondria contain their own genetic system and undergo a unique mode of cytoplasmic inheritance. Each organelle has multiple copies of a covalently closed circular DNA genome (mtDNA). The entire protein coding capacity of mtDNA is devoted to the synthesis of 13 essential subunits of the inner membrane complexes of the respiratory apparatus. Thus the majority of respiratory proteins and all of the other gene products necessary for the myriad mitochondrial functions are derived from nuclear genes. Transcription of mtDNA requires a small number of nucleus-encoded proteins including a single RNA polymerase (POLRMT), auxiliary factors necessary for promoter recognition (TFB1M, TFB2M) and activation (Tfam), and a termination factor (mTERF). This relatively simple system can account for the bidirectional transcription of mtDNA from divergent promoters and key termination events controlling the rRNA/mRNA ratio. Nucleomitochondrial interactions depend on the interplay between transcription factors (NRF-1, NRF-2, PPARα, ERRα, Sp1, and others) and members of the PGC-1 family of regulated coactivators (PGC-1α, PGC-1β, and PRC). The transcription factors target genes that specify the respiratory chain, the mitochondrial transcription, translation and replication machinery, and protein import and assembly apparatus among others. These factors are in turn activated directly or indirectly by PGC-1 family coactivators whose differential expression is controlled by an array of environmental signals including temperature, energy deprivation, and availability of nutrients and growth factors. These transcriptional paradigms provide a basic framework for understanding the integration of mitochondrial biogenesis and function with signaling events that dictate cell- and tissue-specific energetic properties.

Publisher

American Physiological Society

Subject

Physiology (medical),Molecular Biology,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3