Coronary physiology

Author:

Feigl E. O.

Abstract

The major areas of normal coronary physiological research since Berne's 1964 review have been the measurement of ventricular transmural blood flow distribution with microspheres, the adenosine hypothesis of local metabolic control of coronary blood flow, and the autonomic control of coronary blood flow. There is an improved understanding of intramyocardial tissue pressure and extravascular compressive forces on coronary vessels. However, the unexpected finding of zero flow during a prolonged diastole with a coronary artery pressure of 40 mmHg (PZF) is a reminder that the physical forces, including vascular smooth muscle contraction, that determine coronary vascular resistance are incompletely understood. During normal circumstances, the left ventricular subendocardium probably receives more blood flow than the subepicardium does, but the difference is small. When the coronary circulation is compromised by stenosis or aortic valve lesions, the subendocardium is much more vulnerable to underperfusion than is the subepicardium. The coronary vasodilating effect of arterial hypoxia has been confirmed in many studies, but the role of tissue oxygen tension in local metabolic control of coronary blood flow during normoxia is unknown. The coronary vasodilating action of carbon dioxide has received renewed attention, but its role in local control is also unknown. The adenosine hypothesis has passed several critical tests, but despite much research the importance of adenosine in normal coronary regulation is not established. Local metabolic control of coronary blood flow probably involves more than just one factor, but a unified hypothesis has not been put forward. Sympathetic alpha-receptor-mediated coronary vasoconstriction has been demonstrated by nerve stimulation and during a carotid sinus baroreceptor reflex. Sympathetic coronary vasoconstriction is capable of competing with local metabolic control to lower coronary venous oxygen tension under experimental circumstances, but its importance during normal resting conditions is not established. Parasympathetic muscarinic coronary vasodilation has been shown by vagal nerve stimulation, but a role for it during normal blood flow regulation has yet to be demonstrated. There have been elegant descriptive studies of the coronary blood flow response during excitement and exercise, where coronary blood flow increases pari passu with myocardial metabolism; however, there are also data that indicate a concomitant sympathetic vasoconstrictor effect during strenuous exercise. Overall there has been encouraging progress in coronary physiology. Inevitably new knowledge has focused old questions and presented new ones.

Publisher

American Physiological Society

Subject

Physiology (medical),Molecular Biology,Physiology,General Medicine

Cited by 1215 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3