Calcium Ion in Skeletal Muscle: Its Crucial Role for Muscle Function, Plasticity, and Disease

Author:

Berchtold Martin W.1,Brinkmeier Heinrich1,Müntener Markus1

Affiliation:

1. Department of Molecular Cell Biology, Institute of Molecular Biology, University of Copenhagen, Copenhagen, Denmark; Department of General Physiology, Univeristy of Ulm, Ulm, Germany; and Institute of Anatomy, University of Zürich-Irchel, Zürich, Switzerland

Abstract

Mammalian skeletal muscle shows an enormous variability in its functional features such as rate of force production, resistance to fatigue, and energy metabolism, with a wide spectrum from slow aerobic to fast anaerobic physiology. In addition, skeletal muscle exhibits high plasticity that is based on the potential of the muscle fibers to undergo changes of their cytoarchitecture and composition of specific muscle protein isoforms. Adaptive changes of the muscle fibers occur in response to a variety of stimuli such as, e.g., growth and differentition factors, hormones, nerve signals, or exercise. Additionally, the muscle fibers are arranged in compartments that often function as largely independent muscular subunits. All muscle fibers use Ca2+ as their main regulatory and signaling molecule. Therefore, contractile properties of muscle fibers are dependent on the variable expression of proteins involved in Ca2+ signaling and handling. Molecular diversity of the main proteins in the Ca2+ signaling apparatus (the calcium cycle) largely determines the contraction and relaxation properties of a muscle fiber. The Ca2+ signaling apparatus includes 1) the ryanodine receptor that is the sarcoplasmic reticulum Ca2+ release channel, 2) the troponin protein complex that mediates the Ca2+ effect to the myofibrillar structures leading to contraction, 3) the Ca2+pump responsible for Ca2+ reuptake into the sarcoplasmic reticulum, and 4) calsequestrin, the Ca2+storage protein in the sarcoplasmic reticulum. In addition, a multitude of Ca2+-binding proteins is present in muscle tissue including parvalbumin, calmodulin, S100 proteins, annexins, sorcin, myosin light chains, β-actinin, calcineurin, and calpain. These Ca2+-binding proteins may either exert an important role in Ca2+-triggered muscle contraction under certain conditions or modulate other muscle activities such as protein metabolism, differentiation, and growth. Recently, several Ca2+signaling and handling molecules have been shown to be altered in muscle diseases. Functional alterations of Ca2+ handling seem to be responsible for the pathophysiological conditions seen in dystrophinopathies, Brody's disease, and malignant hyperthermia. These also underline the importance of the affected molecules for correct muscle performance.

Publisher

American Physiological Society

Subject

Physiology (medical),Molecular Biology,Physiology,General Medicine

Cited by 740 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3