Presynaptic Release Probability Is Increased in Hippocampal Neurons From ASIC1 Knockout Mice

Author:

Cho Jun-Hyeong,Askwith Candice C.

Abstract

Acid-sensing ion channels (ASICs) are H+-gated channels that produce transient cation currents in response to extracellular acid. ASICs are expressed in neurons throughout the brain, and ASIC1 knockout mice show behavioral impairments in learning and memory. The role of ASICs in synaptic transmission, however, is not thoroughly understood. We analyzed the involvement of ASICs in synaptic transmission using microisland cultures of hippocampal neurons from wild-type and ASIC knockout mice. There was no significant difference in single action potential (AP)–evoked excitatory postsynaptic currents (EPSCs) between wild-type and ASIC knockout neurons. However, paired-pulse ratios (PPRs) were reduced and spontaneous miniature EPSCs (mEPSCs) occurred at a higher frequency in ASIC1 knockout neurons compared with wild-type neurons. The progressive block of NMDA receptors by an open channel blocker, MK-801, was also faster in ASIC1 knockout neurons. The amplitude and decay time constant of mEPSCs, as well as the size and refilling of the readily releasable pool, were similar in ASIC1 knockout and wild-type neurons. Finally, the release probability, which was estimated directly as the ratio of AP-evoked to hypertonic sucrose-induced charge transfer, was increased in ASIC1 knockout neurons. Transfection of ASIC1a into ASIC1 knockout neurons increased the PPRs, suggesting that alterations in release probability were not the result of developmental compensation within the ASIC1 knockout mice. Together, these findings demonstrate that neurons from ASIC1 knockout mice have an increased probability of neurotransmitter release and indicate that ASIC1a can affect presynaptic mechanisms of synaptic transmission.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3